
ECE 604, Lecture 23

November 29, 2018

In this lecture, we will cover the following topics:

• Rayleigh Scattering

• Mie Scattering

– Separation of Variables in Spherical Coordinates

Additional Reading:

• Topic 7.1A, J.A. Kong, Electromagnetic Wave Theory.

• Section 1.2.5 Waves and Fields in Inhomogeneous Media.

You should be able to do the homework by reading the lecture notes alone.
Additional reading is for references.

Printed on December 7, 2018 at 17 : 53: W.C. Chew and D. Jiao.
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1 Rayleigh Scattering

Rayleigh scattering is a solution to the scattering of light by small particles.
These particles are assumed to be much smaller than wavelength of light. Then
a simple solution by the method of asymptotic matching. This single scattering
solution can be used to explain a number of physical phenomena in nature. For
instance, why the sky is blue, the sunset so magnificently beautiful, how birds
and insects can navigate without the help of a compass. By the same token, it
can also be used to explain why the Vikings can cross the Atlantic Ocean over
to Iceland without the help of a magnetic compass.

Figure 1:

When a ray of light impinges on an object, we model the incident light
as a plane electromagnetic wave (see Figure 2). Without loss of generality,
we can assume that the electromagnetic wave is polarized in the z direction
and propagating in the x direction. We assume the particle to be a small
spherical particle with permittivity εs and radius a. Essentially, the particle
sees a constant field as the plane wave impinges on it. In other words, the
particle feels an almost electrostatic field in the incident field.
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Figure 2:

The incident field polarizes the particle making it look like an electric dipole.
Since the incident field is time harmonic, the small electric dipole will oscillate
and radiate like a Hertzian dipole in the far field. Solving a boundary value
problem by looking at the solutions in two different physical regimes, and then
matching the solutions together is known as asymptotic matching.

A Hertzian dipole can be approximated by a small current source so that

J(r) = ẑIlδ(r) (1.1)

In the above, we can let the time-harmonic current I = dq/dt = jωq

Il = jωql = jωp (1.2)

where the dipole moment p = ql. The vector potential A due to a Hertzian
dipole is

A(r) =
µ

4π

˚
V

dr′
J(r′)

|r− r′|
e−jβ|r−r

′|

= ẑ
µIl

4πr
e−jβr (1.3)

The corresponding potential Φ(r) is obtained from the Lorenz gauge that∇·A =
−jωµεΦ. Therefore,

Φ(r) =
−1

jωµε
∇ ·A = − Il

jωε4π

∂

∂z

1

r
e−jβr (1.4)

When we are close to the dipole, we can use a quasi-static approximation about
the potential by assuming that βr � 1. Then

∂

∂z

1

r
e−jβr ≈ ∂

∂z

1

r
=
∂r

∂z

∂

∂r

1

r
= −z

r

1

r2
(1.5)

or after using that z/r = cos θ,

Φ(r) ≈ ql

4πεr2
cos θ (1.6)
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This dipole induced in the small particle is formed in response to the incident
field. The incident field can be approximated by a constant local static electric
field,

Einc = ẑEi (1.7)

The corresponding electrostatic potential for the incident field is

Φinc = −ẑEi (1.8)

so that Einc = −jωAinc − ∇Φinc ≈ −∇Φinc = ẑEi, ω → 0. The scattered
dipole potential from the spherical particle in the vicinity of it is given by

Φsca = Es
a3

r2
cos θ (1.9)

The electrostatic boundary value problem has been previously solved and1

Es =
εs − ε
εs + 2ε

Ei (1.10)

Using (1.10) in (1.9), and comparing with(1.6), one can see that the dipole
moment induced by the incident field is that

p = ql = 4πε
εs − ε
εs + 2ε

a3Ei (1.11)

In the far field of the Hertzian dipole, we can start with

E = −jωA−∇Φ = −jωA− 1

jωµε
∇∇ ·A (1.12)

But when we are in the far field, A behaves like a spherical wave which in
turn behaves like a plane wave. Therefore, ∇ → −jβ = −jβr̂. Using this
approximation in (1.12), we arrive at

E = −jω
(
A− ββ

β2
·A
)

= −jω(A− r̂r̂ ·A) = −jω(θ̂Aθ + φ̂Aφ) (1.13)

where we have used r̂ = β/β. From (1.3), we see that Aφ = 0 while

Aθ = −jωµql
4πr

e−jβr sin θ (1.14)

Consequently, using (1.11) for ql, we have in the far field that2

Eθ ∼= −jωAθ = −ω
2µql

4πr
e−jβr sin θ = −ω2µε

(
εs − ε
εs + 2ε

)
a3

r
Eie
−jβr sin θ

(1.15)

1It was one of the exam problems.
2The ω2 dependence of the following function implies that the radiated electric field in the

far zone is proportional to the acceleration of the charges on the dipole.
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Hφ
∼=
√
ε

µ
Eθ =

1

η
Eθ (1.16)

where η =
√
µ/ε. The total scattered power is

Ps =
1

2

ˆ π

0

r2 sin θdθ

ˆ 2π

0

dφEθH
∗
θ (1.17)

=
1

2η
β4

(
εs − ε
εs + 2ε

)2
a6

r2
|Ei|2r2

(ˆ π

0

sin3 θdθ

)
2π (1.18)

But ˆ π

0

sin3 θdθ = −
ˆ π

0

sin2 θd cos θ = −
ˆ π

0

(1− cos2 θ)d cos θ

= −
ˆ −1
1

(1− x2)dx =
4

3
(1.19)

Therefore

Ps =
4π

3η

(
εs − ε
εs + 2εs

)2

β4a6|Ei|2 (1.20)

The scattering cross section is defined as

Σs =
Ps

1
2η |Ei|2

=
8πa2

3

(
εs − ε
εs + 2ε

)2

(βa)4 (1.21)

In other words, the first equality is the definition for scattering cross section:
Namely

〈Sinc〉 × Σs = Ps

It is seen that the scattering cross section grows as the fourth power of frequency
since β = ω/c. The radiated field grows as the second power because it is
proportional to the acceleration of the charges on the particle. The higher the
frequency, the more the scattered power. this mechanism can be used to explain
why the sky is blue. It also can be used to explain why sunset has a brilliant hue
of red and orange. The above also explain the brilliant glitter of gold plasmonic
nano-particles. For gold, the medium resembles a plasma, and hence, we can
have εs < 0, and the denominator can be very small. Also, since

〈S〉 =
1

2η
EθH

∗
φ ∼ sin2 θ (1.22)

the scattering pattern of a small particle is not isotropic. In other words, these
dipoles radiate predominantly in the broadside direction but not in their end-
fire directions. Therefore, insects and sailors can use this to figure out where
the sun is even in a cloudy day. In fact, it is like a rain bow: If the sun is rising
or setting in the horizon, there will be a bow across the sky where the scattered
field is predominantly linearly polarized.

5



For a perfect electric conductor immersed in a time varying electromagnetic
field, the magnetic field in the long wavelength limit induces eddy current in
PEC sphere. Hence, a PEC sphere behaves like a magnetic dipole and scatters
like one.

When the size of the dipole becomes larger, quasi-static approximation is
insufficient to approximate the solution. Then one has to solve boundary value
problem in its full glory usually called the full-wave theory or Mie theory. With
this theory, the scattering cross section does not grow indefinitely with fre-
quency. For a sphere of radius a, the scattering cross section becomes πa2. This
physics in shown in Figure 3, and also explains why the sky is not purple.

Figure 3:

2 Mie Scattering

The Mie scattering solution by a sphere is beyond the scope of this course.3 This
problem have to solved by the separation of variables in spherical coordinates.
The separation of variables in spherical coordinates is not the only useful for
Mie scattering, it is also useful for analyzing spherical cavity. So we will present

3But it is treated in J.A. Kong’s book and Chapter 3 of my book, Waves and Fields in
Inhomogeneous Media.
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the precursor knowledge so that you can read further into Mie scattering theory
if you need to in the future.

2.1 Separation of Variables in Spherical Coordinates

To this end, we look at the scalar wave equation (∇2 +β2)Ψ(r) = 0 in spherical
coordinates. A lookup table can be used to evaluate ∇ · ∇, or divergence of a
gradient in spherical coordinates. Hence, the Helmholtz wave equation becomes4(

1

r2
∂

∂r
r2
∂

∂r
+

1

r2 sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

r2 sin2 θ

∂2

∂φ2
+ β2

)
Ψ(r) = 0 (2.1)

Noting the ∂2/∂φ2 derivative, by using separation of variables, we assume Ψ(r)
to be

Ψ(r) = F (r, θ)ejmφ (2.2)

where ∂
∂φ2 e

jmφ = −m2ejmφ. Then (2.1) becomes(
1

r2
∂

∂r
r2
∂

∂r
+

1

r2 sin θ

∂

∂θ
sin θ

∂

∂θ
− m2

r2 sin2 θ
+ β2

)
F (r, θ) = 0 (2.3)

Again, by using separation of variables, and letting further that

F (r, θ) = bn(βr)Pmn (cos θ) (2.4)

where we require that{
1

sin θ

d

dθ
sin θ

d

dθ
+

[
n(n+ 1)− m2

sin2 θ

]}
Pmn (cos θ) = 0 (2.5)

when Pmn (cos θ) is the associate Legendre polynomial. Note that (2.5) is an
eigenvalue problem, and |m| ≤ |n|. Then bn(kr) satisfies[

1

r2
d

dr
r2
d

dr
− n(n+ 1)

r2
+ β2

]
bn(βr) = 0 (2.6)

The above is the spherical Bessel equation where bn(βr) is either the spherical
Bessel function jn(βr), spherical Newmann function nn(βr), or the sphereical

Hankel functions, h
(1)
n (βr) and h

(2)
n (βr). The spherical functions are related to

the cylindrical functions via5

bn(βr) =

√
π

2βr
Bn+ 1

2
(βr) (2.7)

4By quirk of mathematics, it turns out that the first term on the right-hand side below
can be simplified by observing that 1

r2
∂
∂r

r2 = 1
r

∂
∂r

r.
5By a quirk of nature, the spherical Bessel functions are in fact simpler than cylindrical

Bessel functions. One can say that 3D is real, but 2D is surreal.
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It is customary to define the spherical harmonic

Ynm(θ, φ) =

√
2n+ 1

4π

(n−m)!

(n+m)!
Pmn (cos θ)ejmφ (2.8)

The above is normalized such that6

Yn,−m(θ, φ) = (−1)mY ∗nm(θ, φ) (2.9)

and that

ˆ 2π

0

dφ

ˆ π

0

sin θdθY ∗n′m′(θ, φ)Ynm(θ, φ) = δn′nδm′m (2.10)

These functions are also complete like Fourier series, so that

∞∑
n=0

n∑
m=−n

Y ∗nm(θ′, φ′)Ynm(θ, φ) = δ(φ− φ
′
)δ(cos θ − cos θ

′
) (2.11)

6See J.D. Jackson, for instance.
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